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a b s t r a c t

Human hydration assessment is a key component for the prevention and proper treatment of heat-

related fluid and electrolyte imbalances within military, sports and clinical medicine communities.

Despite the availability of many different methods for assessing hydration status, the need for a valid

method or technology that is simple, rapid, non-invasive, universal (detects both hypertonic and

isotonic hypovolaemia) and is applicable for static (single point in time) and dynamic (change across

time) hydration assessment is widely acknowledged. The eye is one candidate body region that might

afford such a measure given the intricate balance between ocular dynamics (tear and aqueous humor

formation) and blood (plasma osmolality and volume), which is considered the criterion measure for

hydration assessment. The aim of this review is to introduce and discuss the potential for using ocular

measurements for non-invasive hydration assessment, including tear fluid osmolarity (Tosm), non-

invasive tear break-up time (NITBUT) and intraocular pressure (IOP). There is a relevant physiological

basis for testing the merit of ocular measures for human hydration assessment and recent data indicate

that Tosm and IOP may have utility. Further investigations are warranted to determine the degree to

which ocular measures can act as accurate and reliable non-invasive hydration status markers.

Published by Elsevier Ltd.
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1. Introduction

Human hydration assessment is a key component for the preven-
tion and proper treatment of fluid and electrolyte imbalances
(Cheuvront and Sawka, 2005; Institute of Medicine, 2005; Mange
et al., 1997; Sawka et al., 2007). The most common body water deficit

(hypohydration) occurring in clinical, athletic and most military
situations results from a net loss of hypotonic body fluids stemming
from heat stress (sweating) and fluid restriction or fluid unavailability
(Cheuvront et al., 2010; Institute of Medicine, 2005; Mange et al.,
1997; Sawka et al., 2007). A rise in plasma osmolality is the hallmark
of this hypertonic-hypovolaemia (Cheuvront et al., 2010; Feig and
McCurdy, 1977), and the hypothalamus responds to these alterations
by increasing arginine vasopressin hormone (AVP), which reduces
urinary water loss and results in the production of more concentrated
urine (Andreoli et al., 2000; Robertson et al., 1973). These physiolo-
gical changes provide the framework for using blood and urine for
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hydration assessment. However, when substantial solute is lost, such
as during cold or high altitude exposure and in many medically
relevant scenarios (e.g., gastroenteritis, hyperemesis), less ‘free water’
(i.e. water lacking solute) is cleared (Mudge and Weiner, 1970; Nose
et al., 1988) and the resulting isotonic or hypotonic-hypovolaemia
can go undetected using the same measures (Cheuvront and Sawka,
2005; Institute of Medicine, 2005; Mange et al., 1997; Sawka et al.,
2007). Although no method can yet be universally applied to all types
of hypohydration (hypertonic, isotonic and hypotonic hypovolae-
mia), many methods for assessing hydration state have been used.
The optimal choice will depend on the nature of the fluid losses,
measurement circumstances (field versus laboratory), the potential
for confounding influences and the degree of acceptable invasive-
ness (risk/benefit) (See Cheuvront and Sawka, 2005 for a review of
these methods).

Currently, the most accurate methods to assess hydration status
in clinical, athletic, and military settings utilizes dynamic hydration
assessment from blood, urine, or cardiovascular (orthostatic)
markers (Cheuvront et al., 2010; Cheuvront et al., 2011; Cheuvront
and Sawka, 2005, Duvekot et al., 1994; Knopp et al., 1980; Levitt
et al., 1992; Mange et al., 1997; McGee et al., 1999). Although
change can provide good diagnostic accuracy it requires a valid
baseline, control over confounding variables, and often multiple
invasive blood or urine measures (Carvajal, 1980; Cheuvront et al.,
2010). Large population heterogeneity explains, in part, why few
hydration status markers demonstrate nosological sensitivity from a
more practical, static (single point in time) measure (Cheuvront
et al., 2010; Levitt et al., 1992). There is currently no method or
technology that is simple, rapid, non-invasive (Armstrong, 2005;
Institute of Medicine, 2005), universal (detects both hypertonic and
isotonic hypovolaemia), and is applicable for static and dynamic
hydration status assessment (Cheuvront et al., 2010). For these
reasons, the Institute of Medicine (2005) encourages more research
to improve upon hydration assessment methods for the judicious
diagnosis and treatment of hypohydration.

Measurements of the eye (e.g. tear quality, pressure) can be
influenced by both volume and osmolality changes in blood

(Ashkenazi et al., 1992; Gaasterland et al., 1979; Patel and Blades,
2003; Visscher and Carr, 1944), the latter of which is the current
criterion measure for static hydration assessment of hypertonic-
hypovolaemia (Cheuvront et al., 2010; Feig and McCurdy, 1977); as
such, one or both hypovolaemia subtypes may be diagnosed with
non-invasive human eye measures (Fortes et al., 2011; Kayikcioglu
et al., 1998; Martin et al., 1999). A paucity of research exists that
examines the potential for using ocular measures for hydration
assessment (Fortes et al., 2011; Hunt et al., in press; Kayikcioglu
et al., 1998) Therefore, the aim of this review is to discuss three
ocular measurements that may have the potential for use as
non-invasive hydration assessment markers, including tear fluid
osmolarity (Tosm), non-invasive tear break-up time (NITBUT) and
intraocular pressure (IOP).

2. Aspects of ocular anatomy and physiology applied to
hydration status assessment

A simplified schematic of human eye anatomy is drawn in
Fig. 1A. The tear film and aqueous humor are detailed hereafter
for a better understanding of how their measurement may be
used and interpreted for hydration assessment. The tear film is
composed of mucous, aqueous and lipid layers that act to
lubricate and protect the eyeball (Oyster, 1999). The lacrimal
gland (Fig. 1C) secretes electrolytes, water, protein and mucin into
the tear film under tight neural control (Dartt, 2009) (Fig. 2). This
occurs in two stages, firstly in the acinar cells and secondly in the
ductal cells. Acinar cells comprise about 80% of the lacrimal gland
and secrete primary lacrimal gland fluid that is isotonic and
reflects an ultra-filtrate of plasma (Mircheff, 1989). In support of
this contention, tear fluid has been reported to be isotonic with
plasma (Rolando and Zierhut, 2001); and, as such, it could be
hypothesized that a progressive increase in plasma osmolality
during hypertonic-hypovolaemia would be reflected in Tosm.
Ductal cells comprise about 10–12% of the lacrimal gland, are
estimated to contribute about 30% of lacrimal gland fluid, and

Fig. 1. (A) A simple cross-sectional eye schematic illustrating key parts of ocular anatomy. Intraocular pressure (IOP) is indicated by outward facing arrows in the anterior

chamber. (B) Close-up of the aqueous humor drainage system. Aqueous humor drains through the trabecular network into the canal of Schlemm. (C) Depiction of the

lacrimal gland.
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their main role is to modify the primary lacrimal gland fluid by
secreting electrolytes and water before transporting the lacrimal
gland fluid to the ocular surface (Dartt et al., 1981). Dense
innervation of the lacrimal gland by parasympathetic nerves
(Dartt et al., 1984) and the overwhelming evidence that loss of
parasympathetic innervation blocks lacrimal gland function
(Dartt, 2009) supports a predominant role for parasympathetic
activity over sympathetic activity in lacrimal gland fluid secre-
tion. The total volume of tear fluid in the external eye is �10 ml
and unstimulated tear secretion has been reported to be between
0.15 and 1.2 ml each day (Mathers and Daley, 1996; Tiffany,
2008). A continuous tear film is required to fulfill its protective
role, thus thinning or breaking (i.e. rupture) of the tear film (tear
break-up) produces an irregular surface appearance. Autonomic
blinking serves as a way of rinsing and reforming the tear film.
The stability of the tear film is important for eye health and is
governed by its surface and chemical characteristics. The precise
mechanism underlying tear break-up is not known. Several
competing theories exist to explain the phenomenon of tear
break-up and the importance of the aqueous layer in stabilising
the tear film is well accepted (Holly and Lemp, 1977; Ruckenstein
and Sharma, 1986; Wong et al., 1996).

A typical tear film (Fig. 1A) is 7–9 mm thick with �90% attributed
to the aqueous layer (Patel and Blades, 2003; Ruckenstein and
Sharma, 1986; Wong et al., 1996). However, reported values as low
as 3 mm (King-Smith et al., 2000) and as high as 40 mm (Prydal et al.,
1992) have shown a discrepancy to the typical tear film model.
A thicker tear film is more stable (Wong et al., 1996), but changes in
the thickness of the aqueous layer cannot be measured directly.
Although there are numerous tests available to assess tear volume
and flow, they are either invasive (require surface contact with the
eye) or highly subjective measures with inadequate resolution for
measuring small changes in tear thickness common to marginal dry
eye (Patel and Blades, 2003).

An inadequate tear film can however, be evaluated using tear
film stability tests, such as noninvasive tear break-up time (NITBUT)
or the slightly more ‘invasive’ tear break-up time (TBUT). Tear
break-up time is defined as the elapsed time between a complete
blink and the appearance of a ‘break’ in the tear film is detected and
is typically recorded in seconds. Changes in tear film stability have
been measured in response to mild dehydration (Kayikcioglu et al.,

1998) under the presumption that a decrease in total body water
(TBW) may reduce aqueous layer formation (Fig. 2).

Alterations in hydration status may also affect aqueous humor
formation. The amount of aqueous humor present in the anterior
chamber is dependent on the rates of inflow and outflow
(Connors, 2009). Both of these variables are influenced by a host
of factors including the effects of various pressures (hydrostatic,
oncotic and osmotic) (Fig. 2), anatomical considerations, the most
important of which appear to be structures of the ciliary body in
the posterior chamber, and of the angle of the anterior chamber
(Fig. 1B).

The ciliary body is located at the root of the iris and is the
source of the aqueous humor. The aqueous humor flows from the
back of the iris in the posterior chamber through the pupil and
into the anterior chamber. The angle of the anterior chamber
houses the main portals that allow outflow of the aqueous humor
such as veins in the ciliary muscle (uveoscleral route) and the
canal of Schlemm, which leads to the episcleral veins (Oyster,
1999). Because the aqueous humor is a fluid that is confined to a
limited space, it exerts pressure on the surrounding walls in
which it is confined. This is known as intraocular pressure (IOP)
and serves the purpose of giving shape to the eye in the anterior
chamber (Connors, 2009). The process of aqueous humor produc-
tion by the ciliary body is under tight neuro-endocrine regulation
and out-flow at the canal of Schlemm is largely controlled by
parasympathetic and sympathetic nervous activity (Coca-Prados
and Escribano, 2007) that is likely to be largely independent of
changes in whole body hydration (Fig. 2). Nevertheless, due to the
intricate relationship exhibited between the various forces that
accompany hypohydration, it is quite possible that significant
changes in TBW may produce detectable changes in IOP (Fig. 2).

3. Tear fluid osmolarity (Tosm)

Measurement of Tosm can be made on a small tear fluid
sample of 0.1–0.2 mL using freezing-point depression or vapor-
pressure osmometers. In healthy individuals, Tosm is normally
between 275 and 308 mOsm L�1 (Lemp et al., 2011). Previously,
studies report large variability (Benjamin and Hill, 1983; Gilbard
et al., 1978) that is likely due, at least in part, to inadequate

Fig. 2. Possible pathways by which hypohydration may alter intraocular pressure (IOP), tear break-up time (TBUT) and tear osmolarity (Tosm). Neural control is shown at

the level of the lacrimal gland and ciliary body in a box with a dashed line as this is likely to be independent of hydration. AVP¼arginine vasopressin.
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sample volume and evaporation of tear fluid in the 3–5 min delay
from collection to measurement (Tiffany, 2008). Until very
recently, another obstacle to the general application of Tosm
measurement was the need for an experienced investigator who
could obtain the tear fluid without disturbing its basic composi-
tion: reflexive tearing can alter tear fluid composition (e.g. Tosm)
(Nelson and Wright, 1986). Common tear collection techniques
such as using glass capillary tubes or absorbing Schirmer papers
are uncomfortable, time-consuming and technically demanding
procedures that may irritate the ocular surface and initiate reflex
tearing (Esmaeelpour et al., 2008). Very recently, a non-invasive
tear collection and analyzing device has made it possible to
measure Tosm on a very small sample of tear fluid (50 nL)
(Benelli et al., 2010). The TearLabs osmolarity system utilizes a
single-use test card mounted on a hand-held pen, which both
collects the sample and initiates the measurement (Fig. 3). The
collection procedure is performed by resting the tip of the test
card on the lower tear meniscus, which takes only a few seconds,
is painless and requires little technical expertise; indeed, it is
possible to perform the collection on oneself looking in a mirror.
The pen is immediately docked onto the TearLabs platform
where an output is generated within 10 s using the principle of
electrical impedance.

Using the TearLabs osmolarity system, one recent study
showed that increases in plasma osmolality during exercise-
evoked dehydration and subsequent overnight fluid restriction

were reflected in increases in Tosm (Fig. 4) (Fortes et al., 2011). In
addition, decreases in plasma osmolality during a fluid intake trial
were also reflected in decreases in Tosm providing confidence
that the changes in Tosm reflect changes in hydration and not an
exercise artefact (Fortes et al., 2011). A large correlation was
observed between Tosm and plasma osmolality (r¼0.72,
Po0.01), however the mechanism(s) for the observed association
of Tosm and plasma osmolality remains to be elucidated (Fortes
et al., 2011) (Fig. 2); for example, it remains a matter of conten-
tion whether tear fluid represents a direct filtrate from plasma
(Ubels et al., 1994). Using Tosm as a hydration assessment tool
may be especially appealing to clinicians because the procedure is
less-invasive compared with plasma osmolality, requires little
expertise to perform, and provides a rapid reading. Biological
variation analysis also suggests that Tosm change values may be
diagnostically useful for hydration assessment (Fortes et al.,
2011). It remains to be seen how Tosm responds to isotonic-
hypovolaemia or if it can be applied successfully in an outdoor
sports medicine setting where sunlight, wind, movement convec-
tion, sweat (in the eyes) and other factors may complicate Tosm
measurements.

Fig. 3. Tear fluid collection procedure using the TearLabs osmolarity system.

Reprinted with permission (Fortes et al., 2011).

Fig. 4. Plasma osmolality (A) and tear osmolarity (B) responses to progressive

exercise-heat induced dehydration to 1%, 2% and 3% body mass loss, subsequent

overnight fluid restriction (08:00 h) and rehydration (11:00 h) during fluid

restriction (FR K) and with fluid intake to offset fluid losses (FI J). Values are

means and SD (n¼14). HSD indicates Tukey’s honestly significant difference value

(Po0.05). Significantly different from pre-exercise (nPo0.05, nnPo0.01). Signifi-

cant between trial differences (#Po0.05, ##Po0.01). Reprinted with permission

(Fortes et al., 2011).
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4. Tear break-up time (TBUT)

The time a tear takes to break-up, which is also an indicator of
tear film stability, can be assessed via two main methodologies.
One version is invasive (TBUT) while the other is non-invasive
(NITBUT). Both assessments depend on the same underpinning
physiology. The criterion measure is NITBUT (Holly and Lemp,
1977; Norn, 1986; Patel and Blades, 2003). The Keeler Tearscope-
Pluss is one type of hand-held slit lamp that can be used to assess
NITBUT when combined with magnifier and coarse grid acces-
sories (Guillon, 1998). The principle of operation relies on the
intact tear film acting like a mirror upon which a grid image can
be projected. A thinning (or break) of the tear film is detectable
as random distortions or discontinuities in the grid image. The
time interval between a blink and the first appearance of grid
distortion is taken as the NITBUT (Guillon, 1998; Mengher et al.,
1985a; Patel and Blades, 2003). On the other hand, TBUT is the
measure whereby a fluorescein stain is utilized to visualize the
break in the tear film. This stain tends to decrease tear film
stability thus shortening the time reported compared to NITBUT
(Mengher et al., 1985b; Norn, 1969). In one study, where both
measures were obtained on the same individuals, TBUT and
NITBUT were not in agreement (Cho and Douthwaite, 1995).
NITBUT of 20–30 s is considered normal and a time of r10 s
is also used as a threshold for clinical dry eye diagnosis (Mengher
et al., 1986). However, reported TBUT varies within the literature
based upon methodology (Cho et al., 1992), ethnicity (Cho
and Brown, 1993), diurnal variation (Patel et al., 1988), recovery
from eye surgery (i.e. Lasik) (Albietz et al., 2002; Aras et al., 2000)
and the choice of which eye is used first in assessment. The
choice of which eye is tested first can confound results since the
duration of eye opening influences subsequent reflex tearing
(Mengher et al., 1985a,b). All of these variables lead to equivocal
conclusions regarding the reliability of TBUT assessment for
clinical purposes.

In an eye with otherwise healthy mucous, aqueous, and
lipid layers, a reduction in TBW might impair lacrimal function
and shrink the aqueous tear layer enough to decrease TBUT
(Fig. 2). If dehydration were to reduce the aqueous layer to 1
mm thickness, the undermined tear stabilising influence of
Marangoni-flow, which is generated from surface tension gradi-
ents, would reduce TBUT by 30%, similar to values observed with
aqueous deficient dry eyes (Lemp et al., 1971). Indeed, while ‘dry
eye’ is a common medical condition with a multitude of potential
causes, abnormalities in lacrimal gland secretion explains the
etiology of aqueous deficient dry eye (Holly and Lemp, 1977;
Patel and Blades, 2003). Sjögren’s syndrome is an extreme
example of an autoimmune disorder that attacks moisture-
producing glands like those of the mouth (salivary) and eyes
(lacrimal), resulting in both dry mouth and dry eyes syndromes.
The absence of tears in crying children (o3 years old) is also
among the top four clinical predictors of severe pediatric dehy-
dration (Friedman et al., 2004). However, the only study (Kayikcioglu
et al., 1998) that examined the effects of dehydration on tear
break-up time found no effects but the level of dehydration was
marginal (�1.5% body mass) and the choice of TBUT techni-
que (fluorescein stain) may have artificially shortened the tear
break-up time (Mengher et al., 1985b; Norn, 1986), thus masking
any effects. Therefore, since no investigations have examined
NITBUT, careful assessments using this methodology should be
carried out to determine if NITBUT is predictably altered by
hypohydration. Based upon the list of confounding variables
presented and the inherent variability within the measure
(Brown and Cho, 1994; Cho, 1993; Cho and Douthwaite, 1995),
NITBUT would appear to have greatest potential for dynamic
hydration assessment.

5. Intraocular pressure (IOP)

IOP can be measured through multiple methods all of which
utilize the same underlying principal. IOP measurement is accom-
plished by deforming the cornea with the presumption that the
higher the IOP, the harder the cornea will be to deform via a
forward pressing force from a finger, plunger or a puff of air
(Oyster, 1999). The most common assessment, which is consid-
ered the criterion measure, is the Goldmann tonometer (Kass,
1996). The Goldmann tonometer is not without limitations as it
requires an expert to make the measurements as well as a topical
anesthetic (fluorescein). However, recently tonometers that are
less invasive and are more user friendly (not requiring a medical
expert) have demonstrated promising results and these can be
used in both lab and field settings (Abraham et al., 2008). IOP
measurement is important during ocular examinations for
presence of ocular hypertension (IOPZ21 mmHg), which could be
indicative of developing glaucoma (Hollows and Graham, 1966).

IOP in a normal population is approximately 1673 mm Hg,
with a positive skew towards higher values (Hollows and Graham,
1966). A number of factors can affect IOP such as age (Hollows
and Graham, 1966), diurnal variation (David et al., 1992; Henkind
et al., 1973; Sacca et al., 1998; Wilensky, 1991), exercise intensity
and modality (Risner et al., 2009), cold exposure (Ortiz et al.,
1988), high altitude exposure (Bosch et al., 2010), change in PCO2

(Hvidberg et al., 1981) and change in body position (Hvidberg
et al., 1981). However, the most pertinent extrinsic factor is that
acute fluid ingestion can increase IOP 2.2–2.7 mmHg, thus giving
support for this measure’s potential to assess hydration status
(Brucculeri et al., 1999; Drance, 1963; Martin et al., 1999; Moura
et al., 2002; Read and Collins, 2010).

In a healthy eye, TBW reduction might result in a significant
decrease in IOP due to the close association between composi-
tional changes in blood and aqueous humor (Fig. 2) (Gaasterland
et al., 1979). Thermal dehydration, resulting in hypertonic-hypo-
volaemia, will lead to increased plasma osmolality and increased
total circulating protein concentration, which will lead to changes
in both osmotic and oncotic forces, respectively (Ashkenazi et al.,
1992). Furthermore, fluid and electrolyte losses resulting in
isotonic-hypovolaemia lead to larger extravascular fluid losses
(Mange et al., 1997; McGee et al., 1999), decreases in blood
pressure and subsequent decreases in intraocular pressure from
reduced hydrostatic forces. This is commonly seen after diuretic
use, such as carbonic anhydrase inhibitors, which are commonly
prescribed to glaucoma patients (van der Valk et al., 2005; World
Heath Organization; 2009). Both types of hypohydration could
affect aqueous humor formation/removal and inevitably influence
IOP. Thus, hypohydration may decrease aqueous humor volume
(‘ocular dehydration’) and consequently decrease IOP, which
would enable this measurement to potentially assess both hypo-
volaemia subtypes. Currently, equivocal results have been
published. In some studies the correlations between changes in
IOP and changes in plasma osmolality (criterion hydration
status measure) have been significant (Ashkenazi et al., 1992;
Marcus et al., 1970; Stewart et al., 1970) while others have
shown little promise (Brucculeri et al., 1999; Harris et al., 1994;
Martin et al., 1999).

A recent pilot study from Hunt et al. (in press) has provided
some evidence of an association between body mass loss (water
loss) and change in IOP. These authors demonstrated a stronger
relationship to body mass loss when the change in IOP (dynamic
assessment) was used as compared to the absolute value (static
assessment). These results provide direction for future experi-
ments, however, careful consideration of the exercise protocol
(Risner et al., 2009) and the effects of core body temperature
need to be considered as both may independently affect IOP
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(Hunt et al., in press; Moura et al., 2002; Shapiro et al., 1981).
Lastly, conscientious consideration of the various confounders
previously listed should be taken into account in the experimen-
tal design when testing IOP as a tool to assess hydration.

6. Conclusions

In summary, there is a relevant physiological basis for testing
the merit of ocular measures (Tosm, NITBUT and IOP) for human
hydration assessment. Recent data indicate that Tosm (Fortes
et al., 2011) and IOP (Hunt et al., in press) may have utility for
assessing hydration status, particularly in a clinical setting. The
potential efficacy of NITBUT in a similar setting is logical, but
untested. It remains to be seen how any ocular measure responds
to isotonic-hypovolaemia or if they can be applied successfully in
more austere outdoor settings where sunlight, wind, movement
convection, sweat (in the eyes), and other factors may complicate
these measurements. Further investigations are warranted to
determine the degree to which ocular measures can act as
accurate and reliable non-invasive hydration status markers.
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